Dex: An Improvisational Music Game

Nick Piepmeier
piepsf@aya.yale.edu
Advisor: Paul Hudak
Yale University

June 12, 2007

Abstract

Most music video games currently on the market focus
on music production, but many rely upon some sort of
fixed musical score to drive that production. Because of
this, there has yet to be a music video game that allows
and encourages the user to create new, original music, as
opposed to regurgitating a predetermined score. Whereas
these music games can be enjoyable to play, few include
the creative process into the gameplay itself. In this paper,
I discuss the implementation of a game engine that pushes
the player to compose original music while still control-
ling the possible range of input so as to allow for smooth
gameplay.

1 Introduction

Music video games are generally categorizable into two
different types:

1. Those which attempt to model instruments and are
geared toward the skillful playing of those instru-
ments, and

2. Those which put the player in a more abstract, tradi-
tional game environment, in which the user’s actions
influence the progression of the music.

Both of these cases have interesting aspects that deserve

further consideration.

Games that model instruments tend to focus so exten-
sively on the playing of music with those instruments

that other game mechanics are discarded. For instance,
in the popular game Guitar Hero by Red Octane, the
guitar metaphor is taken to such an extreme that the user
plays on a guitar-shaped controller while attempting to
correctly respond to guitar-tab cues onscreen. While
these games may result in what some call an overly
simplistic game mechanic, they often result in a rich
musical experience. It is important to keep this in mind,
as such an environment is most conducive to creativity
and the creation of original music.

Games that utilize music as an extra dimension
of gameplay or to augment the existing game mechanic
tend to have far less focused musical systems, and
therefore cannot achieve the sort of musical depth that
most instrument-focused games do. On the other hand,
such games tend to prescribe a specific musical course
of action far less than the instrument-focused games do.
A good example of one of these games is Sega’s Rez, in
which the musical environment changes with the user’s
actions. This is implemented in a rather simplistic way
that the user has little control over, thus limiting the effect
that it can have on the game mechanic. In many cases,
however, the addition of even limited music creation
mechanisms to already innovative games serves to add a
great deal of depth to the overall game experience, while
not necessarily affecting the nature of the gameplay in a
drastic way.



2 Structure

My goal was to achieve a rich music creation environment
that is played like a non-music game. That is, I wanted
the power and freedom of a musical instrument with the
interactivity and structure of a video game. This game
concept can be broken up into several submodules that
communicate over TCP sockets:

e An action game
e An instrument-like music generation system
e An Al to influence and judge the creation of music

e A metaphor to link the visual and musical aspects of
the game

2.1 An action game: DexClient

Much of the work on this part of the project was done in
the spring of 2006 when I wrote a generic space/shooter
game. The game was created with a music game in mind
as the final product, and so even without sound, the ani-
mations and scripting interface were created to be heavily
based on rhythm. The user interface was also designed
to allow for a large number of unique inputs that would
correspond to specific notes, and the use of space in the
game was tailored to the fact that visual data would also
be used to make assumptions about the audio state.

The updates made to this module for Dex enabled the
game client to communicate with a level server and a
sound client, thereby obviating the need for heavy Al or
sound coding within this client. It also allowed for parts
to be interchanged relatively easily and for the possibility
of online multiplayer game sessions. The current game
client will send user and CPU player move information to
the level server and get state updates back from the server.
It also maintains its own timing system so that it can keep
in sync with the sound client and make the CPU player
move in time with the level server’s cues.

2.2 A music generation system: HasMidi

Because of Haskell’s rich typing system and the rela-
tive ease of implementing linguistic structures in it, it

was an easy choice as the language to use for most of
the background coding in this project. The existence of
Haskore, a powerful music module for Haskell that facili-
tates the codification, expression, and processing of music
and MIDI, made Haskell the obvious first choice for both
the sound client and the level server. Haskore allows for
the manipulation of music in almost any way imaginable,
so it was relatively simple to create a program to traffic in
music. The major difficulty was getting this music to be
output in real-time, since Haskore lacks such facilities.

This problem was remedied by writing a wrapper DLL
for several of Windows’ low-level audio system calls,
then creating a Haskell module to interface with it. The
module provides facilities for scheduling individual MIDI
events and for real-time input of MIDI data and output of
Haskore Music and MIDI data. A wrapper for Windows’
PlaySound() function was also included in the module.
The MIDI functions work on Windows’ stream-based
MIDI system, allowing for arbitrary amounts of MIDI
messages to be scheduled for output while at the same
time listening for MIDI input. PlaySound() has nothing
to do with MIDI, so MIDI events and WAV output can
happen concurrently without any problems.

HasMidi was then put to use in the Dex sound client,
which listens for specially tailored messages, then pro-
cesses them and passes them to the HasMidi API. This all
happens more or less instantly, allowing any timing to be
done in the DexAl.

2.3 An Al: DexAl

Haskore has already accomplished a great deal of what
otherwise would have been a painstaking and difficult pro-
cess of expressing the series of signals going between the
different modules as music, and allowed for much higher-
level processing of that music, but the transition between
messages and music is still a nontrivial process.

The DexAl is implemented as a server that receives
messages from the Dex game client (the Dex sound client
only receives messages - it doesn’t send them), then pro-
cesses the messages and sends output after updating its
internal state. It is responsible for sending all messages to



the sound client, as well as for updating the game client’s
state.! A side-effect of the DexAI’s implementation as a
listening server is that it is a completely reactive Al: it
can only act when it gets a message from the game client.
Making it act on its own would mean juggling the input it
gets from its sockets and system sleep and wake-up oper-
ations - something that is best left to procedural languages
such as C++ or Java.

The DexAl’s internal state is comprised of a set of
rules, an index into that set of rules dictating the current
rules to use, some time data structures to keep track of
note times, tempo information, and information on the
last measure, two measures, and four measures of player
input/music.

When the DexAl gets input from the game client, the
input is of one of three categories: start/stop messages,
key-on messages, and key-off messages.

e A start/stop message initializes the AIl’s internal
clock for note timing?, then the message is sent off to
the sound client to tell it to get started as well. This
serves to synchronize the states of all of the modules.

e Key-on messages signal to the Al that a player has
initiated an attack (i.e. pressed a key), and records a
partial note (including which player attacked) in the
environment as well as filling in the amount of time
between the end of the last note and the start of the
current note as a rest in the recent input structures.
The level’s current rule index is modified, and the
new set of rules is sent to the game client. A note-on
message is then sent to the sound client that corre-
sponds to the particular key-on event.

o Key-off messages signal to the Al that a player has
finished an attack (i.e. released a key), and completes
the partial note recorded in the environment for the

I This makes the DexAl ideal for a multiplayer online environment,
as it is responsible for keeping all clients in a consistent state. It is
conceivable that in the future, instead of a human player and a CPU
player, there could be two human players in different locations, both
connected to a single DexAl server to play a game

2The AT keeps track of its own time so that it can be independent of
its client’s times. This is helpful if there are two or more human players
or one of the players decides to cheat.

key-on message. The resulting note is then added
to the recent input structures. A note-off message is
then sent to the sound client that corresponds to the
particular key-off event.

If, during a key-on or key-off message one of the recent
input structures overflows (i.e. a measure of the song has
been played), the completed measure is sent to the level’s
Al functions to determine if damage should be assessed
to either side, the environment’s recent input structure is
emptied of everything but the overflow input (i.e., that in
excess of a measure), and damage messages are sent to
the game client, if necessary.

The interesting parts of the DexAl are in its measure
processing Al functions. Each level contains a statistical
Al function and a (for lack of a better identifier) linguistic
Al function. The implementations of these are left up to
the creators of each level, but each takes the music played
so far along with some other parameters and returns a se-
ries of strings to send back to the game client that assess
damage to particular players.

The statistical Al functions that I've written take the
measure (actually a list of (note, playerId) pairs)
and a playerld and run several statistical processes on the
measure. An example of this would be a function that an-
alyzes the average duration of a note, then calculates the
total deviation from that average over the measure. The
return values of the statistical functions are then averaged,
and if the resulting value is above a given threshold, dam-
age is assessed to a player.

The linguistic Al function is slightly more interesting
in that it takes the current level’s rule list as well as the
current rule index as well as the measure and player in-
formation that the statistical Al functions take. Rules are
expressed as lists of lists of (value, weight) pairs.
In a ruleset, there are rules for which notes are advisable
to play, what their durations should be, and how long to
wait before playing that note. Rulesets are grouped to-
gether into lists, and those lists are indexed by RuleIndex
datatypes. On each key-on event, the rule indices are ad-
vanced, causing the Al to progress through the rule struc-
ture in a traceable way. The linguistic Al functions that



I’ve written merely trace back through the list of notes
(the measure) and the rules and sum the weights of the
rules associated with the actions taken. If this value is
higher than a threshold, damage is assessed.

It is important to note that the Al functions have been
left open-ended and level-specific. This is to allow for the
greatest variety possible among levels, and for novel ways
of analyzing player input.

2.4 A visual/musical metaphor

The original version of the Dex game client had various
phases that would correspond to different styles of game-
play. The first, in which the human player was supposed
to dodge a number of obstacles, was intended to acquaint
the user with the level/song, allowing for less of a learn-
ing curve for the subsequent phases of the game. This
was roughly analogous to the pre-planned levels/songs in
instrument-based music games, in that there would be no
room for improvisation due to the fixed nature of the level
and lack of computer opponent.

The second phase was to be more interactive, using a
computer opponent that would react to the player’s moves
and construct a give-and-take relationship in which one
side would be attacking at any given time. This is in fact
very close to the current state of the DexAl and the CPU
player.

The third phase would be a free-for-all, in which ei-
ther player could attack at any given time, and the other
would have to respond appropriately. This would be the
most difficult phase of gameplay, as it would require quick
reflexes and essentially prevent either side from thinking
about future moves. Thus it would create a completely
reactive style of gameplay very different from that of the
other two phases.

The original incarnation of the Dex game client used
projectiles as attacks and expression of notes, and like in
a typical action game, if a projectile hit the opponent, the
opponent would be damaged. It is easy to see how this is
not a good way to link the visuals of the game with the
music. This early visual/musical metaphor made it nearly

impossible to analyze the music played and provide feed-
back that made sense visually, since the only effect the
Al could have on the game state was on the CPU player’s
movements. It was clear that a less literal approach to the
interface between sound and visuals had to be taken.

By doing away with the concept of projectile collisions
causing damage and replacing it with more abstract vi-
sual stimuli, a more feasible connection between the aural
and visual portions of the game was made. The addition
of “action suggestions” that players would attempt to hit
with their projectiles to the center of the playing field, and
the concept of assessing damage at the end of measures al-
lowed for a sensible (if somewhat abstract) visual/musical
metaphor.

3 Future plans and improvements

Some things I'd like to implement in future versions of
this game are

Less-linear levels/rules
Implement more interesting levels and rule structures
with the capability for loops and semi-ambiguous
states

More reactive CPU Al
Make the CPU AI more reactive to the human
player’s moves, possibly adding different personali-
ties and styles, while reducing its dependence on the
level rules

Add third phase of gameplay
Fix the timing bugs that prevent some forms of rapid
gameplay in order to allow the third phase of game-
play mentioned above to be implemented

4 Conclusion

Dex has much room for future expansion, but provides
several of the key features important in a music game that
allows for creative composition of original music within a
video game-style rule/prompt framework. Dex allows the
user to choose which notes to play when, then judges the



user’s music based on a rule framework, thereby encour-
aging the user to figure out what musical style the level
represents and then compose music accordingly. The
computer player provides stimuli and feedback based on
the character’s actions and the level, and the game it-
self provides both visual and musical feedback as to the
user’s status. Given enough time within a level, the vi-
sual/musical metaphor allows the user to progress from
playing the game based primarily upon visual cues to
playing solely based on the music being produced. This
causes the game to become more intuitive, and thus more
conducive to the production of original and creative music
the more it is played.

Thus, Dex serves as proof that it is possible to make a
product that is at once an action video game and an instru-
ment; it is possible to create games that assist the player
in creating new and interesting music.



